0=-16t^2+72+5

Simple and best practice solution for 0=-16t^2+72+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+72+5 equation:



0=-16t^2+72+5
We move all terms to the left:
0-(-16t^2+72+5)=0
We add all the numbers together, and all the variables
-(-16t^2+72+5)=0
We get rid of parentheses
16t^2-72-5=0
We add all the numbers together, and all the variables
16t^2-77=0
a = 16; b = 0; c = -77;
Δ = b2-4ac
Δ = 02-4·16·(-77)
Δ = 4928
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4928}=\sqrt{64*77}=\sqrt{64}*\sqrt{77}=8\sqrt{77}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{77}}{2*16}=\frac{0-8\sqrt{77}}{32} =-\frac{8\sqrt{77}}{32} =-\frac{\sqrt{77}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{77}}{2*16}=\frac{0+8\sqrt{77}}{32} =\frac{8\sqrt{77}}{32} =\frac{\sqrt{77}}{4} $

See similar equations:

| 3x-18=-x+10 | | x^2-7x=-16 | | -6x-7=2x-7 | | x^2+7x+17=34 | | x^2+7x+13=34 | | X+47+x+77=60 | | 10+6x=5x+13 | | 0.0045=x*10 | | 2a+4=7a+a | | -3x-1=-17+5x | | 7y-19=36 | | F(x)=-6x^2+10x+32 | | 4 7x=2 3 | | Y=3x^2+2x-13 | | 7x−3=4x−1 | | 12(x-3)=7(x+5)+4 | | -23=15x | | F(x)=6x^2+10x+32 | | -x-3=7-3x | | 18=x+x-4 | | 3x-5=1x+4 | | 4/15z+5 6z+1/2=13/5 | | -3x-+2x=-2 | | -1+3x=5+x | | a/3.2=19/10 | | 21/3+y=12 | | 2(3x-7)+6=4x-3(2-21/2) | | 126=5x^2 | | 126=x(5•x) | | 11x+4=3(1-2)+1 | | 3=3+6x | | 4+3(2x-3)^2=31 |

Equations solver categories